とうとう、ゴールが見えてきました。
~~~
速度と視野角の関係は、
(速度と視野の広さ)視力0.1以上の範囲
The relation between the speed and the viewing angle
(speed and area of view)Eyesight is a range of 0.1 or more.
40 km/h -100 dgrees
70 km/h -65 dgrees
100 km/h-40 dgrees
とある。
~~~
100 km/h の時の車間:40m がメタ安定に近づいた値とすると、
前車の位置における有効視野面積に対する前車の占有面積の比率を求める。
※ここでは、 面積を円形として捉えている。楕円という考えもできるかも。
When assuming the value for 100km/h, 40m between cars to approach a steady meta, The ratio of the occupation areas of the preceding vehicle in the position of the preceding vehicle to the effective view area is requested.
- Here, the area is caught as a circle. Can you think, that is, the oval?
有効視野面積(A)=(車間*TAN(RADIANS(視野角度/2)))^2*PI()
前車の占有面積(B)=(車間*TAN(前車の幅の半分/車間))^2*PI()
比率(R)=前車の占有面積(B)/有効視野面積(A)
なお、前車の幅を 2m とした。
{Effective view area}(A)=({Between cars}*TAN(RADIANS({Viewing angle degree}/2)))^2*PI()
{Occupation area of preceding vehicle}(B)=({Between cars}*TAN({Half of width in preceding vehicle}/{Between cars}))^2*PI()
R=B/A
or
A=(TAN(RADIANS({Viewing angle degree}/2)))^2
B=(TAN({Half of width in preceding vehicle}/{Between cars}))^2
R=B/A
Width in the preceding vehicle was assumed to be 2m.
***
A(m^2)=(40*TAN(RADIANS(40/2)))^2*PI()=665.89
B(m^2)=(40*TAN(1/40))^2*PI()=3.14
R=3.14/665.89=47.2e-4
or
R=(TAN(1/40))^2/(TAN(RADIANS(40/2)))^2
***
他の速度で、R=47.2e-4 に近くなるように、車間を手で微調整した結果、以下となった。
It fine-tuned between cars by the hand to become near R=47.2e-4 other speeds, therefore it became it as follows.
速度(km/h) speed | 視野角(degrees) Viewing angle | 車間(m) between car | 速度(m/s) speed | R(1e-4) |
40 | 100 | 12.25 | 11.11 | 47.13 |
70 | 65 | 22.85 | 19.44 | 47.25 |
100 | 40 | 40 | 27.78 | 47.2 |
他の速度の場合の視野角の情報がないが、上記の3点の線形?として
以下とした場合で、比率:Rを求める。
Is it the above-mentioned linear though there is no information on the viewing angle for other speeds in three points?The ratio when it is time when it made it as follows ..making it..: R is obtained.

Y軸:視野角(dgrees) ,Viewing angle
~~~
速度(km/h) speed | 視野角(degrees) Viewing angle | 車間(m) between car | 速度(m/s) speed | R(1e-4) |
5 | 140 | 5.37 | 1.39 | 47.11 |
10 | 130 | 6.85 | 2.78 | 47.01 |
20 | 120 | 8.45 | 5.56 | 47.12 |
40 | 100 | 12.25 | 11.11 | 47.13 |
70 | 65 | 22.85 | 19.44 | 47.25 |
100 | 40 | 40 | 27.78 | 47.2 |
120 | 30 | 54.35 | 33.33 | 47.16 |
150 | 10 | 166.5 | 41.67 | 47.13 |
これから、基本図を作成するために、密度と流量を求める。
密度(台/km)=1000(m)/車間(m)
流量(台/5mins)=密度(台/km)*速度(km/h)/(60/5)
Hereafter, to make a basic chart, the density and flowing quantity are requested.
density(cars/km)=1000(m)/{Between cars}(m)
{flowing quantity}(cars/5mins)=density(cars/km)*speed(km/h)/(60/5)
速度(km/h) speed | 車間(m) Between cars | 密度(台/km) density(cars/km) | 流量(台/5mins) flowing quantity(cars/5mins) |
5 | 5.37 | 186.39 | 77.66 |
10 | 6.85 | 145.99 | 121.65 |
20 | 8.45 | 118.34 | 197.24 |
40 | 12.25 | 81.63 | 272.11 |
70 | 22.85 | 43.76 | 255.29 |
100 | 40 | 25 | 208.33 |
120 | 54.35 | 18.4 | 183.99 |
150 | 166.5 | 6.01 | 75.08 |
X軸:密度(台/km) ,density(cars/km)
Y軸:流量(台/5mins) , flowing quantity(cars/5mins)
あとは、これに運転手の習熟度合いで、バラツキが発生するグラフになる。
It becomes a graph where the difference is generated by being in this the proficiency combination of the driver.
end
0 件のコメント:
コメントを投稿